vispy.util.quaternion module#
- class vispy.util.quaternion.Quaternion(w=1, x=0, y=0, z=0, normalize=True)#
Bases:
object
A quaternion is a mathematically convenient way to describe rotations.
- conjugate()#
Obtain the conjugate of the quaternion.
This is simply the same quaternion but with the sign of the imaginary (vector) parts reversed.
- copy()#
Create an exact copy of this quaternion.
- classmethod create_from_axis_angle(angle, ax, ay, az, degrees=False)#
Classmethod to create a quaternion from an axis-angle representation. (angle should be in radians).
- classmethod create_from_euler_angles(rx, ry, rz, degrees=False)#
Classmethod to create a quaternion given the euler angles.
- exp()#
Returns the exponent of the quaternion. (not tested)
- get_axis_angle()#
Get the axis-angle representation of the quaternion. (The angle is in radians)
- get_matrix()#
Create a 4x4 homography matrix that represents the rotation of the quaternion.
- inverse()#
Returns q.conjugate()/q.norm()**2
So if the quaternion is unit length, it is the same as the conjugate.
- log()#
Returns the natural logarithm of the quaternion. (not tested)
- norm()#
Returns the norm of the quaternion
norm = w**2 + x**2 + y**2 + z**2
- normalize()#
Returns a normalized (unit length) version of the quaternion.
- rotate_point(p)#
Rotate a Point instance using this quaternion.